THE ABUNDANCE, DISTRIBUTION AND STRUCTURE OF ADANSONIA *digitata* IN THE NORTHERN GONAREZHOU NATIONAL PARK, SOUTHEAST ZIMBABWE

PATIENCE NYABAWA
B0924259

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF BACHELOR OF ENVIRONMENTAL SCIENCE WILDLIFE AND RANGELAND MANAGEMENT (HONOURS) DEGREE

November 2012
The baobab (*Adansonia digitata*) is a keystone species providing a source of income and fibre for the people of arid regions as well as food and habitat for a wide array of wildlife. The study sought to investigate the spatial distribution, structure, abundance, elephant damage and fire damage in northern Gonarezhou National Park. The study area was subjectively divided into three strata based on soil groups in GNP: lithosol, regosol and siallitic. Sampling sites were randomly selected using random tables, belt transects were considered suitable for the sparsely distributed *A. digitata*. A total of 238 baobabs were sampled from 11 belt transects, where 5 belt transects were in lithosol and 6 belt transects in siallitic. Regosol was discarded because there were no baobabs. Variables measured included plant height, basal circumference and plant status, elephant damage and fire damage were assessed on each and every baobab encountered. Independent tests in SPSS indicated a significant difference (p < 0.05) in mean height and basal circumference between lithosol and siallitic; this was attributed to soil nutrients and composition. The abundance of baobabs was determined by the density and the baobab density of GNP ranged from 32.53 trees/km². Chi-square results indicated significant differences in severity of elephant damage across baobab girth size class and height size class ($\chi^2 = 46.68$, df = 24, p < 0.05). The results indicated that elephants preferred sub-adult to adult trees (>5m in girth and >10m in height). Baobabs near water sources and in plains had a high frequency of damaged trees whereas rocky outcrops act as baobab refugia. There was no evidence of fire damage on all the sampled baobabs, thus fire had no influence on baobabs. Baobab mortality is mainly a result of elephant damage causing a need to manage the population of elephants through translocation or live sales so that vegetation have time to recover.